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SHEAR INSTABILITY AT THE “EXPLOSION PRODUCT–METAL” INTERFACE

FOR SLIDING DETONATION OF AN EXPLOSIVE CHARGE

UDC 534.222.2O. B. Drennov, A. I. Davydov,

A. L. Mikhailov, and V. A. Raevskii

Periodic perturbations at the “explosion product–metal” interface were studied experimentally. Exper-
iments were performed for both spherical and plane geometry. Critical conditions of wave formation
(detonation velocity of an explosive charge D > 6.9 mm/µsec) are determined, and an explanation
of this effect is given. It is found experimentally that a dynamic pulse causes intense plastic strains
at the “explosion products–metal” interface, leading to thermal softening of the steel boundary layer.
In this layer, Kelvin–Helmholtz instability occurs. Calculation-analytical estimates of the critical
boundary unstable wavelength agree satisfactorily with experimental results.

Kelvin–Helmholtz instability (shear instability) is hydrodynamic instability that occurs at the interface be-
tween two contacting flows having different tangential velocities [1]. Mathematical description of interface instability
is approximate. Phenomena such as molecular diffusion (for gases or liquids capable of mixing), vaporization or
condensation, and viscosity are commonly ignored. For simplicity, the Kelvin–Helmholtz instability was first de-
termined for an idealized (incompressible inviscid) fluid. In the simplest form, the instability is described by the
boundary conditions [2]

U(y) =

{
U, y < 0,

U ′, y > 0,
ρ(y) =

{
ρ, y < 0,

ρ′, y > 0,
(1)

where ρ and ρ′ are the densities of the fluid layers and U and U ′ are their velocities, respectively.
Kelvin–Helmholtz instability is dynamic instability of the flow interface y = 0 for boundary conditions (1)

including the case of ρ = ρ′ (homogeneous fluid) and g = 0 (g is the acceleration of gravity). Surface tension at the
boundary y = 0 weakens the instability but does not eliminate it altogether.

From a mathematical viewpoint, the problem of Kelvin–Helmholtz instability in an inviscid fluid is an
initial-value problem for an autonomous conservative Lagrange dynamic system with an infinite number of degrees
of freedom. Equilibrium flow [under conditions (1)] is the state of equilibrium of a system whose stability can
be studied using small-perturbation theory. According to this theory, an arbitrary small perturbation can be
represented as a linear superposition of elementary wave solutions. The amplitude a(t) of any kth elementary
equation satisfies the ordinary differential equation

d2a

dt2
= S(k)a. (2)

The stability condition has the form S(k) < 0 for all k. Here S(k) is the so-called perturbation growth factor, which
is a function of wavenumber.

In the particular case of a plane interface described by relations (1), the elementary wave solution of the
differential equation (2) corresponds to sinusoidal perturbations of the interface with an arbitrary wavelength λ =
2π/k. For a horizontal interface in a vertical gravity field (two fluids of different densities move at different
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Fig. 1. Loading diagram in the experiment with spherical geometry: 1) spherical layer of the high-
explosive (HE); 2) steel capsule; 3) glass powder; and 4) initiating element.

velocities), a sinusoidal perturbation of the interface with wavelength λ = 2π/k increases as the exponential function
exp (S(k)t) [2], where

S(k) =
ρρ′k2

(ρ+ ρ′)2
(U − U ′)2 − ρ− ρ′

ρ+ ρ′
(g − ÿ)k − σk3

ρ+ ρ′
. (3)

Here ÿ is the acceleration of the light layer, σ is the surface tension at the interface, and k = 2π/λ is the wavenumber
(introduced to symmetrize the plane-wave equation with respect to x and t).

The stability condition for relation (3) is written in the following form [2]:

4g(ρ− ρ′)σ > ρ2ρ′2(U − U ′)4/(ρ+ ρ′)2.

Kelvin–Helmholtz instability is well understood for liquids and gases (gas–gas, gas–liquid, and liquid–liquid
interfaces were considered) [1–5].

In recent decades, some experimental results on shear instability at the interface between two metals have
been published [6–9]. However, the state of the interface between a strong medium (metal) and a strengthless
medium (gas or liquid) under conditions of high-velocity relative flow has not yet been studied. The acceleration of
plates by explosion products (EP) for sliding detonation of a high explosive (HE) charge is well understood and has
been used for a long time (explosive welding, cladding, etc.); however, special features of the “EP–metal” interface
after dynamic loading have not been reported. Mindeli et al. [10] found that an analog of a shape-charged jet is
formed at the “EP–metal” interface (for sliding detonation of an EC), as suggested by the marks (cavities) produced
by the jet on the metal target surface perpendicular to the direction of detonation-wave propagation.

Below, we give experimental results on the development of perturbations at the “EP–metal” interface for
sliding detonation of an HE charge. The loading diagram is shown in Fig. 1. A loading device of spherical geometry
was used. A spherical capsule made of St. 10 steel (outer radius R = 87 mm and thickness ∆ = 4 mm) was
filled with a porous material (glass powder of bulk density ρ ≈ 1.4 g/cm3) and placed in a spherical layer of TNT
(ρ0 = 1.6 g/cm3, D = 6.9 mm/µsec, outer radius r = 127 mm, and thickness δ = 40 mm). In the experiments,
the HE layer was in contact with the metal. After blasting, large periodic wave-like perturbations on the contact
surface (“HE–metal” interface) of the steel capsule were observed. Figure 2 shows a macrophotograph of the surface
fragment, and Fig. 3 shows a photograph of a microsection of the “EP–metal” contact surface. The perturbations
are characterized by wavelength λ ≈ 2.5 mm and amplitude a ≈ 0.22 mm.

It is likely that Kelvin–Helmholtz instability was developed along the “hot EP–metal” interface. Data on
the occurrence of shear instability during high-rate sliding of a gas along a solid surface were obtained for the first
time.

It is worth noting that the perturbations develop steadily in the layer above which the angle between the
front of the sliding detonation wave and the contact surface of the shell amounts to 90◦.

Similar results were obtained in the experiments with plane geometry. The loading diagram is shown in
Fig. 4. A plane HE charge (plasticized composition based on HMX of density ρ = 1.86 g/cm3 and detonation-wave
velocity D = 8.75 mm/µsec) was located on the surface of a steel plate (St. 3 steel). A sliding detonation wave was
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Fig. 2. Macrophotograph of a fragment of the outer surface of the steel capsule.

Fig. 3. Photograph (×25) of a microsection of the contact surface of St. 10 steel (a ≈ 0.22 mm;
λ ≈ 2.5 mm).

initiated in the HE charge along the contact line. At a distance from the initiation point L > 200 mm, where the
detonation-wave front is almost perpendicular to the plate surface, periodic wave-like perturbations were formed at
the “EP–metal” interface (0.08 mm 6 a 6 0.1 mm and 1.8 mm 6 λ 6 2.0 mm), which were seen at the surface of
the plate after the explosion (Fig. 5).

Apparently, the perturbations are formed due to Kelvin–Helmholtz instability at the “EP–metal” interface.
Heated to a temperature of approximately 2000◦C, the EP slide with a high velocity (U = D/4 6 2.2 mm/µsec)
over the surface of the steel plate. Under these conditions, both tangential and normal velocities of the metal-layer
material can be ignored. As a result of short-term dynamic action, intense plastic strains occur at the “EP–metal”
interface. This leads to heating and thermal softening of a thin boundary layer of the metal. The metal is subjected
to the dynamic action for time t1 ≈ 8 µsec (until the rarefaction wave from the external boundary of the HE layer
arrives at the contact boundary).

For the experiment with spherical geometry, the thickness of the heated soft steel layer can be estimated
from the relation

l ≈ (τæ)1/2. (4)

Here l is the length of the heated layer, τ the time of temperature action, and æ is the thermal diffusivity.
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Fig. 4. Loading diagram in the experiment with plane geometry: 1) plane HE charge; 2) steel plate;
3) foamed plastics plate; 4) support; 5) initiating element.

a

b

Fig. 5. Photographs (×25) of microsections of contact boundaries of steel (St. 3 steel):
(a) a ≈ 0.1 mm and λ ≈ 2 mm; (b) a ≈ 0.08 mm and λ ≈ 1.8 mm.

From (4) it follows that l ≈ 130 µm. In this layer, Kelvin–Helmholtz instability is caused by the action of
the large rotational component of the tangential velocity. In the process, the metal layers adjacent to this layer are
also involved in the perturbations. Therefore, the amplitude of the resulting perturbations (a ≈ 220 µm) exceeds
the thickness of the heated soft layer. Generally, the thickness of the unstable layer x is linked to the perturbation
wavelength λ by the relation a ≈ cos (kx) exp (−2πx/λ). The maximum thickness of this layer is x ≈ λ/(2π). In
the case considered above, x ≈ 400 µm, which is the same order of magnitude as the perturbation amplitude a
determined experimentally.

The initial perturbation (a0 ≈ 10 µm), determined by the initial surface roughness, increases by an expo-
nential law until the perturbation amplitude equals the thickness of the soft layer. Further perturbation growth is
limited by the strength properties of the metal.

Drennov et al. [11] considered the problem of evolution of small perturbations that occur when an ideal
fluid slides over the surface of a strong material. This formulation of the problem corresponds to the case where
one material slides over another material, whose layer adjacent to the contact surface lost strength.

In the elastoplastic approximation, the following critical condition for stability of the layer was obtained:

a0/λ 6 (a0/λ)cr ≈ (σyield/G)[(Mcr/M)2 − 1]/(4π
√

3). (5)
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Here σyield is the yield point of the layer, M = U/c is the Mach number, c is the velocity of the shear wave in the
elastic layer, U is the velocity of the ideal-fluid layer, Mcr is the critical Mach number, which depends on wavelength,
and G is the shear modulus of the layer material.

For wavelengths much smaller than the layer thickness, we have Mcr ≈ 1.8. In this case, relation (5) takes
the form

(a0/λ)cr ≈ (σyield/G)[(1.8/M)2 − 1]/(4π
√

3) ≈ (σyield/ρ)[(1.8/U)2 − (1/c)2]/(4π
√

3).

For many metals subjected to moderately strong shock waves (ρ/ρ0 < 0.05), the estimate
(σyield/G)/(4π

√
3) ≈ 10−3 is valid. For velocity of the explosion products U ≈ 2.2 mm/µsec and velocity of

shear waves in steel c = 2.8 mm/µsec, we obtain

(a0/λ)cr ≈ 10−3[(1.8 · 2.8/2.2)2 − 1] ≈ 4.25 · 103.

For standard roughness a0 ≈ 10−2 mm, the critical wavelength is λcr ≈ 2.4 mm. Perturbations with a larger
wavelength do not grow. In the experiments with spherical geometry (the action on the material is most intense),
the growth of perturbations with a wavelength λ ≈ 2.5 mm was observed, which agrees with the estimate given
above. In the experiments with plane geometry, perturbations with smaller wavelength grow.

In summary, the experimentally observed growth of perturbations at the “EP–metal” interface can be ex-
plained by Kelvin–Helmholtz instability, which is responsible for the short-term thermal softening of the near-
boundary layer of the metal. The critical perturbation wavelength λcr was estimated. Perturbations with a larger
wavelength do not grow.
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10. É. O. Mindeli, V. G. Kabulashvili, T. G. Mardaleshvili, and É. Sh. Chagelishvili, “Effect of the initial tem-
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